Tech Forums > SOHC/4 Bikes
CB550 Assembly Manual
SohRon:
This pic shows the carb rack with its mounting paraphernalia; at top is the rack of carbs and on the right is the manifold for carbs 1&2 with everything assembled and ready to install. At left, we have the installation components spread out for clarity: the # 3&4 intake manifold (with O-rings) and carb insulator boots, along with the attachment clamps. At bottom are the overflow drain tubes, and the vent tubes draped over the rack should be noted as well
The carburetors have been thoroughly cleaned and rebuilt, then bench-synced, leak tested and had their float heights checked via the clear hose method. The rubber insulators are new from BikeBandit, and all the other hardware came from "Box-'O-Bolts" auctions on ebay.
To begin installation, I mounted the intake manifolds to the carbs. These have the vacuum ports for carb sync testing built into them; they're plugged with a screw and copper crush washer. Later manifolds don't have this feature as the port is on the carb, IIRC, so it's best to make sure you have the correct manifold for the right carbs. They come as a right or left set; the little port screws and the "bridge" connecting each manifold pair should be oriented downward when mounting the manifold to the carbs.
I installed the manifold o-rings (these are the same o-rings used in the valve adjustment covers, BTW) and smeared a little grease on them to help them seal...
...then inserted the whole assembly onto the head. I had to spread the manifolds apart slightly to get them to fit down over the studs, but the whole thing slid on easily enough
I then attached the manifold/carb assembly to the head using eight flange nuts (no washers of any type used with these)
Once the carbs were in place, I connected the overflow hoses to the outlets on the carb bowls and routed them down the back of the engine, along with the carb vent hoses, which are attached to vent outlets between carbs 2&3 (upper left). All of these hoses are gathered together using a little hard plastic band (lower right)...
...then route down between the engine and swingarm. The vent hoses terminate at the swingarm, while the overflow hoses are gathered by this little bale on the frame
Now that the carbs are in place, it's time to install the air induction unit (or airbox, if you prefer). Here is the infamous stock airbox assembly spread out for your perusal (and, if I may, a note to those who are thinking of putting pods on their bikes: you might want to keep a copy of this picture around for... you know... later ;) )
Moving boustrophedonically (... now, there's a $5 word for you! You can pronounce it by repeating this rather grisly little phrase very fast: "Boo Stro fed on Nick Lee", with the accent on Boo and on. It means "as the ox plows [or turns]" - in other words, moving from one side to the other and back again in a zigzag pattern, like oxen plowing a field. It's a Greek concoction and is interesting in that its definition is actually shorter than the word itself. I like it, though; it has great rhythm).
Anyway, major digression here. As I was saying, moving boustrophedonically, starting at the upper right we have the plenum drain hose, the filter/element case drain and the element box/breather cover coupling hose; all with attachment clips. Next comes the element cover, the foam element, a rubber element cover seal, the separator plate (AKA seal plate, punching metal, etc) and the filter/element case.
Continuing "as the ox plows", we find three tiny little metal bits (and we'll get a closer look at them later): two small tubular spacers and an old friend, a case washer identical to the one we used on the chain case. Next comes an oval case "nut" that fits down into the filter case, followed by two airbox support brackets with mounting bolts, the air filter clamp and the front air filter cover.
In the bottom row are the tool tray, the air filter element, the airbox plenum and, finally at the very bottom, the plenum to carb clamps.
Now, if you'll pardon me, I'd like to do a minor rant here for just a second. That's a whole passel of parts, no matter how you look at it; it's also a prefect example of why you shouldn't rely on just the Clymer book. Take a look at their section on the air filter and compare it with this picture, for one example among many.
I'm not saying don't get the Clymer book, just don't try to rely on it alone. Get the Honda manual as well - in fact, I'd get it first. You can download a version of it from this site, but don't get cheap on me; go out and actually buy a copy you can hold in your hands. The hard copies are different than the digital versions here on the site and, at least in the section I compared together, more comprehensive. Besides, it's difficult to study a digital version when you're asses-to-elbows in grease trying to set some critical gap .
And they come in a nifty spiral setup so they lay flat and help you keep your place, too!
'Nuff said. I thank you for your indulgence (but do get the Honda book, OK?)
I started out by installing the plenum to the carbs. Now, with nothing else on the bike, it's a little easier to do than it would be with all of those pesky electrical geegaws and cables and bothersome what-not that can just get in the way, but there's still a bit of a trick to it.
First, I made sure all of the intake boots (available new from David Silver Spares @ $36 a set) were secure and correctly oriented in the plenum. This doesn't matter as much with the center boots, as they are symmetrical, but the outer two boots for 1 & 4 carbs are angled and must be oriented correctly. Fortunately, Honda helps with this by molding small dimples into the plenum face with corresponding extrusions on the boot. Just line them up and you're good to go (note that Honda originally glued these to the plenum, but it was merely to accommodate assembly at the factory and glue is not necessary here. You can use it if it helps keep the intake boots in position)
Next, I removed the upper rear engine hanger bracket to make some room, then inserted the plenum from the left side of the frame kind of catawampus in through the electrical panel "bay", extending the "shoulder" of the plenum down and out through the space vacated by the engine bracket. A couple of things to note are that I've pre-installed the boot clamps onto the plenum, and though the intake boot kissing the carb bowl may look a bit distressed, it can handle it; after all, if done correctly this entire process takes approximately (as Spock would say) 7.33517 seconds to accomplish...
...bringing the rest of the plenum down 'til all boots are level with the carb bowls...
...then gently pushing the left "shoulder" past the down tube 'til the whole thing just "snaps" in to place (Note: The plastic on the plenum shoulder is pretty soft, but you might consider putting a sheet of paper [or whatever] in between the shoulder and downtube if you're concerned about your paint. I didn't use anything, and it didn't even smudge the powder coat)
With the plenum in position, it's a simple matter to slip the intake boots over the carb throats and tighten down the clamps
This interesting and vaguely pornographic shot reveals the installed plenum from the rear, with the two filter case connection points top and bottom, and a vagin oval shaped air corridor surrounded by a rubber grommet
There's a matching opening in the filter case, with a protruding lip surrounding its perimeter that slides into this grommet (this is a NOS plenum and, while the rubber itself is still nice and pliable, the 30+ year old glue on the grommet has dried a bit, as you can see)
Now, there is an air tight fit between the grommet and case lip, and you have to wiggle the filter case around and use a fair amount of force to get it to slide into that oval-shaped opening in the plenum. My NOS grommet, being a virgin, was just too tight, and no matter how I pushed or wiggled it, I just couldn't get the case lip to penetrate the opening. I finally used a little P-80 lubrication, after which it gently and easily slid right in... all the way... and it was sooo... and... I...
OK, that's enough of that...
Now that I've, er, mated the filter case to the plenum it's time to consummate the deed. This is the airbox (and I'm using "airbox" to designate the combination of both the plenum and filter/element case) mounting hardware
At left are two little tubular spacers that fit into corresponding holes in both the plenum and filter case, while the oval-shaped "nut" secures the lower case mounting bolt. Next is the rear mounting bracket with bolts and washers, while at the bottom is a case washer similar to the one we installed in the chain guard. Last (but not least) is the front mount aith its associated bolts and washers.
I began by installing the spacers. These fit between the plenum and filter case, connecting them together; one on top (below left), the other on the bottom (right)
They're necessary because, without them, tightening the connecting bolts and nuts would compress the ABS plastic, causing it to flex and eventually tear.
Spacers in place, I installed the plenum/filter box connecting bolts and washers. The lower sections of the plenum and filter box are secured together by a 10mm 6x25 bolt, an 18 mm washer, split washer and this special oval "nutplate", which fits down inside the filter box (right)
The top 6x25 bolt not only completes pairing of the plenum and filter case together, it affixes the front airbox mounting bracket to the assembly. The bolt, with a split washer and 18mm washer, is inserted from the inside of the case through the case body and into a nut that's welded to the back of the mount
Next, the rear mounting bracket is attached to the rear "nose" of the filter/element case utilizing the case washer, another 10mm 6x25 bolt and split washer...
..the bolt screws into a nut on the back of the bracket, just like the front bracket had. Note the orientation of the bracket, with the longer "leg" extending away from the airbox
Here's an overall view of the airbox as it sits in the bike. The front bracket mounts to a plate welded across the frame with a 10mm 6x12 bolt (and the plate is slightly angled, so the bracket is "bent" to match it), while a 10mm 6x40 bolt attaches the rear bracket to the bike at one of the frame cross members. The inset gives a more detailed look at the orientation of the brackets...
The two final parts that finish up the installation are the drain hoses for the filter/element case and the plenum. They come in two sizes, and while they may look similar, they're actually quite different
The longer hose is the plenum drain hose. It is has an internal foam filter
Foam filter. Remove this when using hose for drain on the filter/element case
Its primary purpose is to drain any gas that might somehow escape the carbs and splash into the plenum. The foam acts as a kind of barrier that lets gas out but doesn't let in a lot of air or debris, so that the correct pressures are maintained inside the plenum during engine operation. It connects to the plenum via this outlet formed into the plenum body where it's secured by an omega clip
It then routes down and through this bale on the frame, which it will eventually share with the battery vent
The shorter hose attaches at the base of the filter case and is actually no longer available; however, the plenum hose can still be had and, with a couple of mods, will work fine. Just cut it to length and remove the internal foam filter mentioned previously. The hose differs from the plenum drain in that it uses no internal filter; it's (obviously) shorter (@11"), and it terminates in a special tip that looks and operates like this :
This hose and tip are necessary because one of the functions of the air filter element stack is to condense liquid vapors from the blow-by gasses as they're being cycled through the PCV system (more on this in Part 2). The condensate (mainly water) dribbles down here and collects at the little tip; just squeezing the bulb opens a slit in the side that lets it all drip out. Nifty, eh? Now, because this is part of the air intake system it needs to be air-tight, and that's another thing the little tip does; it closes off the drain tube and helps maintain a negative atmosphere within the filter/element box, a condition that is necessary for proper functioning of the air filtration and crankcase ventilation systems.
So, the obvious idea is that the hose needs to be kept plugged until it needs to be drained. The biggest problem with this is that the fancy schmancy little hose tip demonstrated above is made of unobtainium, and is dang nigh impossible to find. I managed to snag one through the kind auspices of a fellow forum member (Thanks, G-man!!), but what I originally had to resort to was a small plastic plug that fit tightly into the end of the drain tube and could be removed for draining when necessary...
It's actually a weatherstrip grommet from an early Corvair and is still available - here's a link: http://www.corvair.com/user-cgi/search.cgi?part=C8500. They're around three bucks for a pack of 10 (so you've got a couple left over. Who knows what use you might find for them).
Whatever works to keep the hose plugged. Meanwhile, the hose routes down through the same wire bail as the carb overflow tubes, as shown in the above pic.
Now that the airbox is mounted in the bike, the next step is to install all of the anti-pollution goodies, and this is such an important subject that I'm going to take a closer look at it.
To clear the crankcase of noxious gasses and acid vapors, the CB550 (and all of Honda's SOHC bikes) utilizes a system known as crankcase "evacuation" as opposed to crankcase "ventilation". The crankcase isn't ventilated like a normal engine; there's no inlet for air to get into the case and as such it's known as a "closed" system. It's pretty simple: intake air drafts over the opening in the element cover, creating a negative atmosphere in the case and drawing blow-by gasses from the crankcase. The biggest problem with this type of set-up is that intake volume and blow-by production don't always match - something the PC valve compensates for, and we don't use - which effects efficiency and tends to make the fuel/air mixture run rich; a condition that Honda's engineers took into account and designed for. There's no PCV valve or flame arrestor because that big 'ol plenum sitting out there with all of that airspace acts to homogenize the vapors more evenly with the incoming air stream, and to dissipate back-fires or fuel vomiting from the carbs.
Now, in the past, these gasses were merely vented out into the atmosphere via a "Road Draft" tube.
The official Honda designation for this collection of parts is the "Blow-by Gas Scavenging Device", and this is a drawing of it purloined directly from the Honda shop manual (find this in your Chilton's).
The first thing we'll look at is actually no. 2 on the list; the Breather tube. In the CB500 and other bikes this was used as the road draft tube, and simply extended from the breather cover, down past the overflow tubes, terminating just below the bottom of the engine. Honda took it and attached it to an air filter case modified to contain a crude catch can (5), where a series of filters refines the blow-by gasses to a more combustible form
The hose connects at the breather, then extends down between carbs 3&4 to this little plastic "elbow" at the base of the air cleaner/element case
But all of the action actually starts with something they call the "Element Cover" (10). It comes in the form of an inverted funnel: a cone with a boxed lip surmounted by a short tube that extends into the center of the air filter element. A metal "cage" surrounding the funnel acts as a support for the air cleaner element. Underneath, there's a plate that fits over the cone that is perforated with a series of holes that let the gasses pass through from the rest of the system
Element Cover
The element cover is important because it supplies the motive power for blow-by scavenging, and it's been carefully calibrated for the purpose. Like the road draft tube of old, it's the venturi effect of the onrushing intake air over the top of the tube that pulls the bad stuff from the crankcase via the Breather tube (2 - which I've just installed). Those vapors, starting out hot and moist deep inside the crankcase, travel up through the cam chain "chimney" and are gathered in the breather cover, where a combination of baffles help remove any heavy oil contaminants from the gasses and return them to the engine. The vapors then move up through the breather cover and are compressed into this long, narrow tube until they reach the separation chamber at the base of the air cleaner/element case. Once there, rapid re-expansion of the gasses, the sudden slowing of the rate of vapor travel and the relative coolness of the chamber cause water and vaporized oil to condense out of the emissions. The gasses are then pulled upwards into the Seal Plate (7), which consists of a small rectangular metal cup covered by a plate that has a series of holes punched into it similar to the element cover, but smaller and more numerous; and it's called the "Punching Metal" (8 - gotta love the Japanese) - AKA separator plate, condensation plate, etc.. The gasses move up through two small openings in the bottom of the seal plate and more oil and water vapor condenses on the punching metal, where it drips down into the separation chamber and then on to the drain (6).
Seal Plate and Punching Metal
Now, here is as good a time as any to focus on why that drain needs to be kept plugged. The element cover is essentially a vacuum collector, and it doesn't care where it gets its input. In order to positively clear the crankcase, all of the suction created in the element cover needs to be directed at the incoming gasses from the breather tube. With the drain open, some (or all) of that vacuum can be diverted to pull fresh air into the system through the drain hose, rather than working to clear the crankcase; and at the very least, the efficiency of the entire scavenging system is compromised. Two Tired put it (very well) this way: "The breather system needs to evacuate the engine crankcase. An open bottom hose will bypass/equalize any suction sourced in the air filter box that was intended for the crankcase. Think of a "Y" shaped drinking straw, with only one end in the fountain drink. Unless you suck REALLY hard, you'll stay thirsty."
Bottom line: if you don't plug the hose, you really suck (air, that is). It should be cleared at every oil change.
The seal plate just fits down into the air cleaner case with the two holes oriented downward and the "Punching Metal" facing up
The next step in the process is the wet filter (9). A 3" X 4" X 1/4" sheet of medium-density open-cell Polyurethane foam called "Element B". It sits in the little box formed on the bottom of the element cover and is sandwiched between the punching metal and the element cover plate described above. The foam element further refines the blow-by by removing any remaining water or oil vapor that might have made it past the seal plate and punching metal; the wet process also helps neutralize any acidic vapors before they enter the carb intake. The Honda Shop Manual says this should be cleaned with solvent, then dipped in ATF and wrung out for use just like the foam filter on your lawn mower.
All of this is kept separate from the rest of the filter case by a rubber U-channel seal (present but not indicated on the drawing; even Honda leaves stuff out) that fits around the element cover "box" where the foam element lives. It slides onto the stamped metal lip of the funnel, encircling it and sealing off the air filter chamber. Just like the plug for the drain, it helps insure that all of the vacuum being generated by the element cover is directed towards evacuating the crankcase, not being used to pull in extraneous air from the filter box. In addition, the seal acts as a buffer between the punching metal and the base of the element cover "box" so that they don't slide against each other.
Here's the element cover with the filter and seal in place.
It's installed down over the seal plate
Now, the element cover seal is nearly as elusive as the aforementioned drain bulb. I managed to snag two from "Box-O-Parts" auctions on ebay, but I was considering using a dense foam weather-strip wrapped around the base of the element cover before I found them. The important thing is to keep the condensation chamber (catch can) in the bottom of the filter case isolated, so if you can't come up with the proper rubber part, you might give the foam a try... EDIT: Due to the efforts of various members of this forum, this important little seal is now being reproduced and may be had at this link: http://www.claussstudios.com/id45.html . Clauss also has the elusive front air filter box cover (see below) as well as quite a few other hard to find rubber parts. Check him out.
At last, we come to the final step in the process. The blow-by gasses, now properly conditioned for use by the engine (like drinking water on the International space station; it comes from recycling... well.. never mind) flow up into the element cover, gathering speed as they move into the ever-narrowing space at the top of the cone. Now, because of where it sits in the intake airflow, the element cover is considerably cooler than the rest of the scavenging system, so as the vapors enter the top of the cone they begin to swirl and make contact with the body of the element cover, creating yet another filtering step as any stray oil or water vapor is filtered from the gasses via centrifugal force and condensation. The gasses then move up through the calibrated funnel tube to erupt like Vesuvius into the airstream being pulled in through the air filter (Element A). Honda says that the gasses are further filtered at this point, but the truth is that once they get here they don't hang out to chat; they're drawn directly into the gaping maw of the plenum with the rest of the intake air.
Incidentally, part of this will become blow-by once more, thus completing the great karmic cycle of sunrise and sunset, birth and death, summer and winter, fuel and blow-by...
Ommm...
Here, the air filter is installed. There's a hole in the bottom of the filter frame that slides down over the element cover tube (don't get me started, now...), and the filter rests on a large foam washer that sits atop of the element cover, through which the tube protrudes. Once the filter is in position, it's locked there by this little metal spring clamp (11) that simply slides into a slot formed into the rear case "nose"
At the front of the filter case, this rubber cover keeps water from entering the system during wet conditions. It has a channel molded into it that fits down over the case "nose" and holds it in place. This elusive part is now being reproduced; see above for a link
With the air cleaner mounted, we finish the BGSD installation with the tool tray/air cleaner cover. It's important to have this installed because we want the incoming air to be concentrated around the a/c opening; like everything else, it has been calibrated to work with the rest of the system in specific ways, so leaving it out disrupts the over-all flow and lets too much air in from too many directions for the element cover siphon tube to work correctly; not to mention the fact that it will cause the engine to run on the lean side...
So, here's a shot of the completed carb installation
SohRon:
Here is a layout of the major components (excluding the rotor): moving from right to left (sorry... no especially fancy words for that that I know of) we have the Master Cylinder, complete with lever, hose "B" and boot; next is the three-way "joint" with pressure switch and hose "A"; below that are the caliper adjustment "bolt" and spring, the joint attachment bolt with clip, and a brake connection "Banjo" bolt with crush washers; next to that we have the front and rear caliper (calipers "A" and "B', respectively) with pads, the caliper hanger, and the two big caliper bolts; finishing up with the caliper hanger attachment bolts, the rigid brake pipe and the disc splash guard
Now, if you've been following along you'll notice that some of the above indicated parts (hanger and splash guard) have already been installed with the fender. That simply leaves us with just that much less to fiddle with during this session. And, are we happy about that? Yes, we are...
I began by installing the 3-way joint; it fits up against a stop on the bottom steering yoke and is connected with a single bolt. For what appears to be such a simple component, it's actually sort of complicated. Here it is with all of its parts:
At right is the brake light pressure switch with its associated crush washer and wiring harness; at bottom is a Banjo bolt and crush washers; to the left we have the mounting bolt and a clip that will help route the speedo cable when we get to that. Finally, we have a second banjo bolt with washers (note that the actual "Banjo" is the fitting at the end of the brake line...
Banjos
...so the above bolt is the "internally relieved" bolt that connects it to the system; hence, the term "Banjo bolt")...
Whatever. As I mentioned, the 3-way joint fits on a bracket formed into the lower yoke
Next, I attached the lower brake hose (hose "A") to the bottom of the joint with a banjo bolt; note the crush washers on either side of the banjo "head". The "neck" fits into a little slot formed into the "skirt" surrounding the hose/joint interface; it routes the hose toward the rear (inset)...
...where it curves down and back again toward the front. A rubber grommet on the hose attaches it to the fender via this bale...
The bale is pretty stiff wire, so it can be difficult to push the hose connector and grommet down over it. The method that worked best for me was to slide the grommet down onto the hose, slip the hose and grommet into the bale, then push the hose connector into position in the grommet.
Once the hose is in position on the bale, the next step is installing the rigid brake pipe. It routes down between the fork and fender; there's a little valley formed into the fender brace for it. There should be plenty of room here; if you can't get the pipe through, you've got the fender on wrong (see the fender installation post). I left it loosely connected to the hose in order to have some wiggle room when inserting the pipe into the caliper
With the pads pre-installed, the two halves of the caliper are attached to the hanger with two big bolts. It helps to back off or, better yet, remove the caliper adjustment bolt and spring while installing the caliper to the hanger, and make sure that pad "A" (moving or active pad with piston) is pushed as far into the caliper as it can go
The brake pipe then routes onto the caliper, where it attaches at the pipe inlet. I tightened down the pipe connector here, then finished up the connection at the hose "A"/pipe joint. The pipe needs to be able to move with the caliper without binding, so when snugging down the connectors I was careful to avoid introducing any extraneous tension into the system, and made sure that the caliper moved freely after the pipe was installed
Gotta love that POR-15 Chassis Cote!
Back at the joint, the girls were feeling frisky, so I dropped my... oops! ...Sorry! Wrong forum!!! ...where was I... oh, yes; back at the 3-way joint the upper brake hose (hose "B") connects in a similar fashion as hose "A", and is routed upward toward the master cylinder. This hose has an interesting configuration in that one of the banjo joints is slightly bent (inset): this attaches to the master cylinder while the straight end connects here at the 3-way joint, as depicted
This leaves the final major component to install: the Master Cylinder (or MC). This is another part from the original bike, and I've rebuilt it and installed a new kit.
The MC fits onto the bars using a clamp and it, like all the other bar clamps we've used, has one "leg" longer than the other. In this case, the short leg is indicated by a little punch mark on the clamp (inset). I installed the clamp with the punch mark (short leg) oriented to the bottom, tightening the top bolt first and leaving the gap on the bottom of the bar. The MC will have to be re-adjusted on the bar once the bike is all together and in running trim in order to maintain the correct fluid level; for now I'm setting it roughly in a position that will be conducive to bleeding and adjusting the brake
With the MC in place, the upper brake hose (hose "B") is routed up from the 3-way joint and installed. There's a rubber boot that covers the connection at the MC; I slid it down over the hose, then attached the hose to the MC using two crush washers and a banjo bolt. I'll leave the boot off until I've bled the brakes just to make sure there no leaks here
Now that everything is in place, I went through all of the connections and made sure they were tight. I adjusted the pad "B"/rotor clearance to .006" per the owner's manual, then added fluid and bled the brakes per Two Tired's excellent write-up in the FAQ section. If you haven't read it yet, you should as it is invaluable...
After bleeding the brakes, I installed the rubber cover over the hose "B"/MC connection to complete installation of the front brake
Upper brake hose (Hose "B")
Lower brake hose (Hose "A") and brake pipe connection
The main thing I was concerned with during the installation, particularly the rigid brake pipe, was that the system remain as neutral as possible. It's important for proper retraction of the caliper and pads that the caliper arm able to move freely and not be forced to one side or the other due to a twisted hose or connection. Bleeding and adjusting the brake is enough of a PITA without fretting over the mechanicals, so it's best not to hose up your connections! Har, har! Get it? "Hose up your"...
Fine. Be that way. ::)
With that, I'll bring this session to a screeching halt ;D ;D ;D
SohRon:
Here's the rear brake mechanism spread out for your perusal
Moving boustrophedonically (!) from the upper right, we start with the brake pedal itself. Next comes the pedal spring, then the actuator lever and shaft and the pedal height adjuster bolt, The brake switch and spring come next, with the brake panel/shoe assembly completing the row.
Dropping down, we have the brake rod adjuster nut, followed by the rod/arm "joint", then the brake rod itself along with the rod spring. Moving to the right along the rod we find the brake arm and the arm shaft seal and cover. At the far right is the "T" shaped brake rod connector pin with its associated cotter pin.
The bottom row begins with the brake stay swingarm bolt and its accoutrements of cotter pin, nut and washers. Next is the brake stay arm (in the flesh), followed by its brake plate mounting hardware consisting of a special "T' shaped bolt and "R" clip, a rubber washer, an 18mm plain washer and, last but not least, a nut to hold all of it together.
In addition, I'll be adding some accessory parts: the driver's footrests, the shift lever and the kickstart pedal
I began assembly by installing one end of the brake stay arm into its bracket on the swingarm. The bracket is a folded pocket attached to the swingarm with a gap just large enough for the tab on the end of the stay to fit into, then the shouldered bolt is run through
and secured with a nut, split washer and cotter pin, pinning the stay in place
The bolt attaches using the standard nut, washer and split washer. I chose to locate the 18mm washer on the outside of the bracket to try to save the powder coat from the ravages of a naked bolt head...
Next, I connected the stay to the brake panel using a special "T" shaped shouldered bolt that fits into a slot formed into the rear of the panel
There are a couple of styles of this bolt; later versions have a more standard hex head but still fit into the slot.
Once the bolt was in position, I installed the stay onto the brake panel in the following sequence:
At upper left is the panel with bolt installed. Next, the large rubber washer is inserted over the bolt. At lower left the brake stay has been installed, followed (in the last pic) by the mounting washer, nut and "R" clip. It's important that the stay arm connection be free to flex, so I used a washer with a small enough ID to fit over the threaded portion of the bolt but not so large that it slides onto the shoulder and locks the stay in place. Like so many of my ex-girlfriends, that stay rod just wants to be free...
Here's an overall pic of the assembled brake stay
Next: the brake pedal. I began this step by connecting the brake rod to the actuator lever with both parts off the bike. Trying to connect the two with the lever and pedal installed means crawling around under the bike and other undignified maneuvers, so it's best to get it all over with right at the outset. With the lever pointing to the left, I joined the two parts together using the little "T" pin (inset). Note that the curve of the rod connector is oriented upward. The pin is then locked into place via a cotter pin
Once this pre-assembly was done, I installed the lever onto the bike via a bracket on the frame. I copiously greased the inside bore of the bracket and the lever shaft, then inserted the shaft into the bore from the rear
Next, I fitted the brake arm to the brake cam pivot shaft. On a side note, it's interesting that this method of brake activation (a paddle-shaped cam forcing the ends of the shoes apart) is fairly unchanged from Renault's original patent of 1902, and is almost exactly the same (smaller but unchanged) as the brake mechanism in my 1926 Model T Ford...
Model T Ford Brake
The cam shaft extends from the brake panel; it's splined, but Honda left a raised "tab" as a locator for the arm and cover, both of which have corresponding notches that fit the tab
Before I actually fit the arm there are a couple of preliminary details to take care of. First, this felt dust seal is inserted over the shaft (below left) and into the little groove provided for it...
...then a special cover goes on over the seal (above right). This cover is marked with an arrow to help keep track of brake wear; as the brake shoes wear the arrow rotates closer to a punch mark on the brake panel boss, indicating maximum wear limits. Here's how it looks, shamelessly purloined from the Honda Shop Manual
The arrow and wear mark are circled
With the seal and cover in place I installed the brake arm
Two things to note about the above photo: first is that the right-hand chain adjustment bolt has been removed for clarity and, second, I fitted the brake arm by aligning the punch marks present on both the cam shaft and the arm (inset).
Now that the brake arm has been installed, I rotated the lever until the punch mark on the end of the shaft was in the (roughly) 12:00 position...
...then slid the brake rod joint (the dowel-shaped widget inset below) into the hoops on the brake arm with the internal bore oriented horizontally; I dropped the rod spring down over the rod, then inserted the whole assembly through the bore in the joint, adding he adjuster nut to keep it all in place
Next in line is the kickstart pedal. I'll have to install this and the footrest before fitting the brake pedal; the height of the brake pedal is determined by the footrest, so that's gotta go in first, and it's just difficult to mess with the kickstart pedal after the brake pedal is installed, so I'm doing it like this. The kickstart is easy enough; I roughly aligned it in a vertical position, then slid it onto the kickstart gear shaft and bolted it down
The footrests come next. I restored these with new parts all the way 'round and a couple of coats of POR-15 Blackcote
My first step was to assure that the lower rear engine hanger bolt, which is where the footrests will be installed, was inserted evenly and that equal amounts of the bolt extended from either side of the frame
Now, this isn't just a rude gesture...
...the footrest mounts each have a little "finger" extending from its base. As the mount is fitted over the hanger bolt, this finger slides under a small post extending from the side of the frame, locking the footrest into position.
I slid each footrest into place on the hanger bolt, then secured each side with nuts, washers and lock washers, making sure that the nuts were tightened evenly so that equal portions of the bolt extended from either side:
Right
Left
While on left side of the bike, I added the gear selector lever. I installed it in a roughly horizontal position as there are no alignment marks; I'll adjust it if I have to once the bike is road ready...
Back to the brake pedal side, with the footrests and kickstarter installed, I reached for the brake pedal (finally!). First, I inserted the spring loosely over the lever shaft making sure that the long "leg" of the spring extended forward, with the shorter "leg" hooked into a notch formed by a frame gusset...
...then slid the pedal onto the lever shaft using the punch marks provided on each part (below, inset). Once the pedal is in place, the long leg of the spring snaps around the lower pedal arm and, voilĂ ! It's a brake pedal!
The final bit of assembly is the pedal height bolt. It screws into a small tab attached to the frame. I've seen it assembled officially by Honda two different ways: with the head pointing down and with the head pointing up, like it is here (and, I might add, the way it's shown in the Honda Shop Manual). The owner's manual has it with the head down. With the head on the bottom of the tab, the bolt is merely screwed completely into the tab, and the bolt head thickness is used to set pedal height. With the bolt pointed up there's a little more adjustment leeway, which is why I've oriented it this way
I adjusted it so that the pedal was 1/4" below the footrest, measured horizontally. Really, the determining factor is the lower hanger bolt nut; adjust the pedal height so that the pedal arm doesn't contact the bolt and you'll be solid...
And that completes assembly of the rear brake. If you're sharp you'll have noticed that I have not addressed the brake light switch. Never fear; I'll get to that when I install the wiring system and lights...
But wait! There's more!
Here's a little tip from MC Rider to help center the brake in the hub. It goes like this:
"[This is the] technique for centering the brake plate. You would have everything hooked up. The axle should be finger tight. Press the brake pedal, or run the adjuster up or whatever to activate the brake. That will center the plate. While holding the brake activated, tighten the axle. Now you'll have the best it can be."
That pretty well explains it. After completing this procedure I know that my brakes are the best they can be! Thanks, MC!
In conclusion, here's an overall view of the rear brake assembly, ready to do its thing. Just one more step towards completion
SohRon:
The stock exhaust is fairly uncomplicated, but there are a couple of tricks that might help installation go a little easier, and I'll try to cover them in the post. While the following procedure may not be the only (or even best) way to do it, it gets the job done and, after all, that's what we're here for.
First step will be mounting the kick stand (or "side" stand, if you prefer). Here it is, all laid out with its associated spring, pivot bolt, nut and washer.
There's not much to it, so installation is pretty simple. First, the stand is located on its frame mount so that the hole in the stand "ear" lines up with that on the mount (below left)
I added a bit of grease inside the hole (above right), then inserted the bolt. The kick stand itself is threaded on the rear "ear", so the pivot bolt is inserted through the front "ear", then the frame mount, and is then torqued down tight, leaving part of the bolt exposed in the rear. The nut and washer are then added, locking the pivot bolt in place (below)
Note that Honda does not require the lock washer... I included it because, well, that's just how I am... :D
Once the stand is mounted, the spring is installed. It has an interesting configuration in that the spring "hooks" are offset to the side of the spring coil, rather than extending from the center as in most springs, allowing it to sit fairly flat along the body of the stand (inset)
I've actually seen this spring in two configurations: one like that depicted in the inset, where both "hooks" are offset to the same side, and a slightly different approach where the longer "frame side" hook (or "eye") is centered on the coil, while the shorter "stand side" hook is offset, as can be seen in the above pic. I expect that this is simply a change between years, but either spring will do the job.
No matter how you approach it, installing this spring is, to put it in technical terms, an effing bear. There are substantiated reports of folks using coins between the coils to stretch the spring out to the proper length, but I just hooked the upper "hook" to its mount on the frame (a short metal dowel - it has a groove near its end that the spring snaps into); then, using a good pair of vise-grips, I grabbed the lower "hook" and, with the application of some good old-fashioned elbow grease, moosed that sucker down over the stand mount - a hook extending from the stand "arm" about half way down its length. While it wasn't easy, it wasn't as hard as I expected it to be and, really, anyone with a couple of hairs on their chest should be able to accomplish the task without too much difficulty. I'm not knocking anyone else's technique; I'm just suggesting you try it this way before you go breaking into the piggy bank.
Some folks have reported successfully installing the stand spring by hooking it to its mounts on the lever and frame prior to installing the stand; the stand is then used to stretch the spring as it's (the stand) being positioned on the frame (pic #4, above). The bolt is then slid into position and Bob's your uncle. I tried it this way and nearly pulled the bike over onto myself; to be honest, I may not have given it the shot it deserved as there are those out there who swear by the method and find it difficult to conceive of doing it any other way... at any rate, it's something to consider.
A good side stand spring is extremely important. I was following a friend once whose spring was either stretched out or the wrong part, and somehow the stand managed to fall at some point during the ride (I had seen him raise it as we left the parking lot, so it wasn't a matter of him spacing it to begin with). As we went to make a left-hand turn onto the highway, that stand planted itself in the asphalt like a ski pole and the whole bike did a quick pivot around it before crashing to earth and skidding 20 or 30 feet down the pavement in a cloud of sparks and dirt. I was right behind him on the CL350 and had to do some fairly fancy maneuvering to avoid becoming part of the disaster. Needless to say (but I will anyway) the experience was not good for either the bike or the rider. It happened some forty years ago, now, but he still carries the scars to this day.
With the side stand installed, I turned my attention to the main course: the exhaust pipes. Here they are in nice, sparkly new condition with the mounting brackets and center stand cushion (inset) already installed
I got these from BikeBandit a couple of years ago and paid something like $700 - $800 for them; nowadays, since they're no longer being made, I've seen people wanting stupid crazy prices in the thousands of dollars for a set like this. At this point, they may be the most valuable part of the bike...
Here's a look at the hardware I'll be using to mount the pipes
From top to bottom are the exhaust mount "joints", below those are the joint spacers (or "collars"), then the four copper gaskets, the mounting nuts and split washers, the rear mount bolts, and the balancer tubes and clamps. Smack in the middle bottom, trying to remain inconspicuous but failing miserably, are the passenger foot rests, which I'll install along with the pipes.
I began by inserting the copper gaskets into the exhaust ports
These should fit snugly and hold themselves in place by frictional pressure; if they're loose and won't stay in place, check to see that you have the right gaskets or, more likely, the old mashed up gaskets are still in the port and need to be removed. Gaskets in the ports are a relatively common malady that can cause all kinds of mischief because it's not always obvious that they're still there; they kind of get squished flat and can appear to be part of the port. The gasket area around the port should be flat with no ridges or steps. If you do find old gaskets in your ports, they're easy to remove using a flat-bladed screwdriver.
Now comes the fun part: installing the pipes themselves. I began by laying them out in order on each side of the bike. It's easy to tell which pipe goes where if you follow a couple of simple rules: first off, the mounting brackets are oriented inward toward the bike, so that'll let you know which pipe goes on which side of the bike; and, secondly, the balance tube flanges extending from each muffler should point toward each other, so that lets you know which pipe goes on the bottom (inside) and which on top (outside). The top pipes are installed on the outer cylinders (NOs 1 & 4); the bottom pipes on cyls 2 & 3. Simple enough. The longer mounting brackets are installed on the bottom pipes, while the short ones go on the uppers...
Next, I "hooked" each header in the exhaust port openings so that the pipes were oriented roughly in the correct position. The flange on the end of the header is caught by the port opening and fins and will hold the pipe in place while it's being attached at the muffler
One thing to note about the above photo is that I've slid the joint for each pipe down onto the muffler so that it'll be ready for later. Once the rear mounts are attached, it's nearly impossible to get these things on, so now's the time to install them. They should be oriented so that the step in the joint "face" is pointing forward (inset). It seems like it would be a good idea to actually mount the joints onto the studs at the port, thereby aiding in holding the pipes in position, but doing so causes the pipes to bind and makes installation at the muffler difficult, so they're just sitting there for now, patiently awaiting their moment in the spotlight, all the while tossing out crude remarks about trains going through tunnels, ring toss, and other vaguely suggestive observations of a questionable moral character...
With everything in place, I inserted the rear mounting bolt (with washer) through the hole in the footrest bracket (below right, inset), then through the corresponding hole in the top (outer) muffler bracket (in this case, pipe #4). Pivoting the pipe upward, I aligned the bolt with the hole in the frame mount "ear", then pressed it through, entrapping both the footrest and muffler brackets on the outside of the "ear". With the bolt holding everything in position, I prepared for the next step by installing the balancer tube and clamp onto the flange on the bottom (#3) muffler (inset)
This next bit is a real juggling act. As the bottom pipe is raised into position the header flange must stay in place in the port while the muffler bracket is inserted from behind onto the mounting bolt extending from the rear of the frame mount "ear". Simultaneously, the balancer tube is slipped onto the flange protruding down from the top muffler, entrapping the tube between the mufflers. It all happened so fast that I'm not really sure how I accomplished this feat, but I think I withdrew the mounting bolt until only a slight nub protruded from the rear of the "ear", inserted the balancer tube up onto the flange in the top muffler, and then pressed the bolt on through the hole in the muffler bracket. There's a bit of finagling to do in order to get everything into the proper position, but once it's there it's all held in place with a loosely installed nut and split washer (inset). I don't want to tighten anything down yet as I'll need some "wiggle" room for the next step
I began the final procedure by sliding the joints up the header to their position at the port. The collars are installed around the pipe with the flanged end toward the joint, where they slip into the "step" described earlier. The other end butts up against the flange on the header (inset). As far as orientation of the collars is concerned, Honda doesn't really specify how they should go, either vertically or horizontally; I've positioned them vertically after a forum member suggested they might drain water better that way... makes sense to me, so that's how I've done it
Now, the pipes will have some manufacturing tolerances to them and those big copper "O-rings" take up a lot of space, so when it comes time to slide the joint/collar/header assembly into place in the port not much of the stud is left exposed behind the joint for the nuts and split washers to fit onto. The trick here is to install the nuts, torque them down to specs, then remove them one at a time so that the washers can be added. You don't want to forget the split washers as they're a safety feature, and it's not a good thing to have your pipes coming loose in the middle of a run...
Right side complete; time for the other side, where it's "second verse same as the first" (and if you know what song that line came from and can even sing a couple of bars, you are old...)
The final step, with everything properly fitted, is to tighten up all of the nuts and bolts I've left loose, finishing up with the screws on the balancer tubes
And there we have it: shiny new pipes for the bike. Here's a shot of the completed installation
SohRon:
So, in this installment I'll commence fitting the electrical system, starting with installation of the rear fender. I know this isn't necessarily an intuitive beginning, but bear with me and (hopefully) all will be made clear. Here it is with its associated mounting harware
At upper left is the inner fender (which I've already installed! Wahoo!). Next to that is the fender itself, rechromed by The Chrome Shop (and liberally doused with Boeshield, of course!). Moving down to the center bottom is the tail light / license plate bracket; then, to the left, the upper fender mounting bolts, spacers and washers. Last (but not least), on the right is the tail light mounting hardware.
So, before I install the fender, I'm going to do some preliminary work by fitting the tail light bracket. This would be bothersome to do with the fender already on the bike, so I believe it's best to get it out of the way right at the outset. Here's a shot of the bracket and its adjunct mounting hardware: four each rubber grommets, shoulder bolts and washers
I began by inserting the grommets into the holes provided in the bracket...
...the tail light wires are then threaded down through this rubber grommet previously installed
Underneath, the wires then run through this little tunnel welded to the bottom of the fender
The tail light bracket is then affixed to the fender using the shoulder bolts and washers, and the fender is now ready for installation
Oh, and one more thing: I'm going to do something I haven't done so far in the build - I'm installing the bike's first sticker. It's a warning decal covering tire specs, and installing it after the fender has been fitted would just be a pain, so I'm applying it now
Just the first of many more to come.
Now, the inner fender has already been installed as a preliminary step to adding the air intake system, but I wanted to include it here as it's a major part of the rear fender arrangement. With it in place, we can begin fitting the fender
Here's the fender mounting hardware: two 10mm bolts with washers (upper mounting bolts), two 10mm chrome bolts (lower fender/grab bar mounting bolts), and two special oval-shaped stand-offs
The little stand-off spacers are slotted, and they fit down into holes provided in the inner fender like this, with the slots oriented front-to-back
Like the spacers used in the airbox, these keep the ABS plastic inner fender from crushing and eventually splitting at the mounting holes.
Raising the fender into position, I then threaded the tail light wires up through another grommet installed in the inner fender...
...then positioned the fender in place between the two "ears" on the frame and installed the upper mounting bolts and washers. This turned out to be a major hassle in that it was difficult to insert the bolts through the mounting holes on the frame "hump", then through the standoffs and have the fender in the right place to accept the bolts. It was hard to hold everything "just right" so as to avoid cross-threading the blind nuts welded to the back side of the fender. What I ended up doing was to temporarily install the lower fender/grab bar mounting bolts just to hold the fender in place, after which all I had to do was pivot the fender into position and the top bolts inserted easily. I left them a little loose; they're just supporting the fender for now
With the upper mounting bolts supporting the fender, the next order of business is fitting the grab bar. Here it is, along with the rear turn signals and the signal mounting hardware
There are a couple of preliminary steps I undertook before mounting the bar. These two little grommets (inset below) are supports for the rear turn signals and, as they are a serious beee-otch to install into the brackets welded onto the grab bar, I took the opportunity to insert them now. They are two sided - one side has a smiley face, while the other wears a blank, befuddled expression; and there's a slot that goes around the perimeter of each grommet as well. The grommets are fitted onto the grab bar brackets with the blank side outward, while the smiley side faces inboard and chomps down onto the bottom rail of the bracket. The perimeter slot is pressed through the opening in the bracket and holds the grommet in place
Next, I removed the temporarily installed lower fender mounting bolts as well as the acorn nuts and washers on the upper shock mounts on each side of the bike. The grab bar then fits like a wishbone onto the shock mount studs; once it's in position, the shock mount nuts and washers are loosely re-installed, as well as the lower fender mounting bolts and washers
Once all of the nuts and bolts are in position, all are tightened to spec. The recommended sequence for tightening all of the bolts would be: upper fender mounting bolts first, then the lower fender/grab bar bolts and, finally, the shock mount nuts.
And, voila!... it's a rear fender!
The next order of business is to complete installation of the rear turn signals that began with mounting the grommets. Here's a closer look at the signal mounting hardware
At top are the signal mounting brackets; in addition to mounting the signal light stems, they provide grounding for the lights, and there's a ground wire soldered to a lug on the back of each bracket. These, like the grommets pictured just below them, come in pairs - though, unlike the grommets, there's a left and a right side. Also included in the above pic are two small tubular spacers, and two oval-headed screws that affix the signals to the mounts.
I started out by inserting the little spacers into the previously installed grommets. Each grommet has two holes molded into it, and the spacer is inserted into the front hole on the grommet (below left)
Once the spacer is in place, the mounting bracket slides up over it (above right). Things to note about the above pic are that the side of the bracket with the ground lug is facing inboard; the larger hole in the bracket is oriented to the rear; and the ground wire leads off toward the front of the bike. Orientation is the same on both sides of the bike
The wire for the signal light is then threaded through the rear hole in the bracket (below left)...
...then the signal light stem is inserted into the mounting bracket, and the whole she-bang is held in place with the oval-headed screw (above right)
Both the ground and signal wires are then gathered together and fed through this little loop welded to the back side of the grab bar (below left - shown here previous to installation for clarity)...
...then routed up inside the frame "ears" through this clip (above right) and through a gap that lies between the fender and inner fender. They are then routed through the inner fender wiring guides, along with the tail light bundle
...and, of course, all of this happens on the other side, too!
And, here we have it: rear fender, tail light and turn signals
Navigation
[0] Message Index
[#] Next page
[*] Previous page
Go to full version